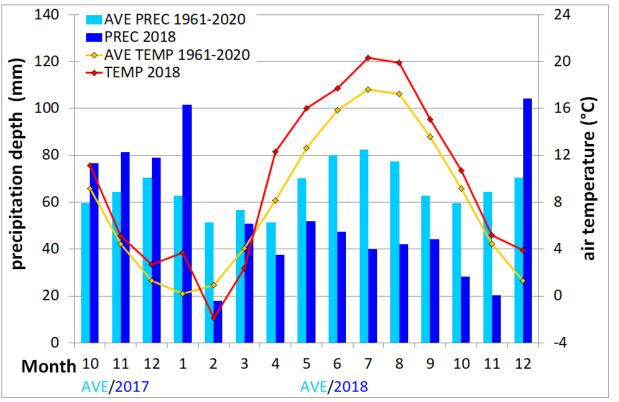
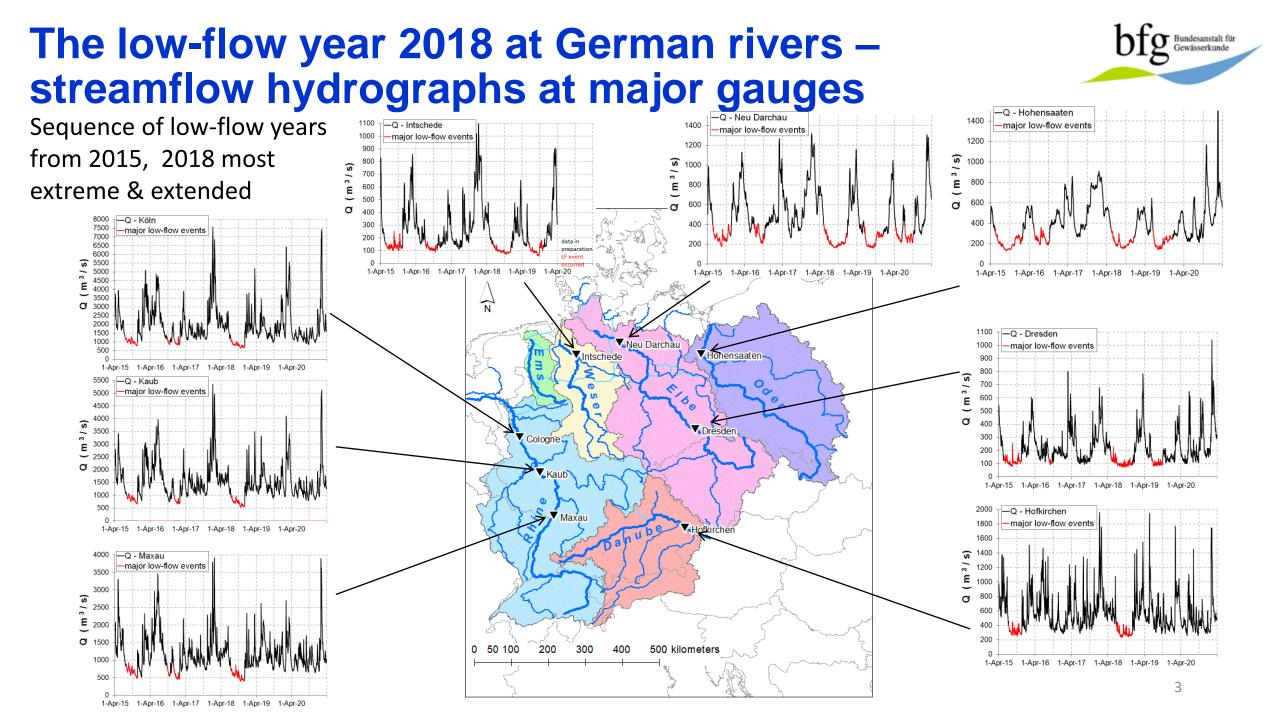

The Low-Flow Year 2018 in Germany

Impact, Hydrological Analysis and Management Approaches



<u>Martin Helms</u>, Axel Keeß, Dennis Meißner and Enno Nilson Federal Institute of Hydrology, Germany

The low-flow year 2018 in Germany - meteorology



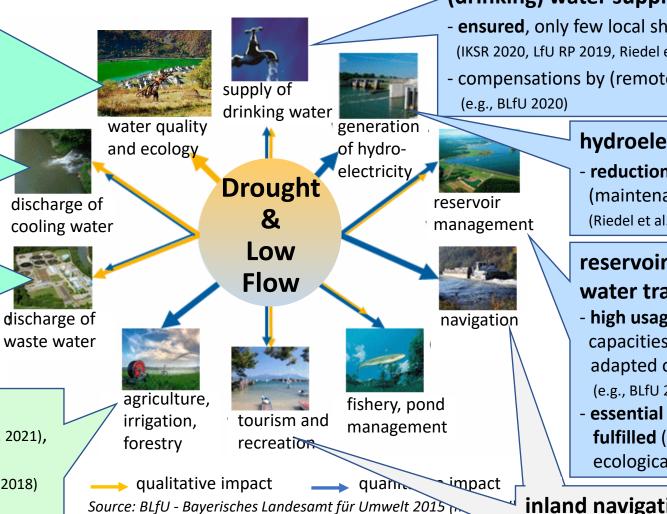
Mean monthly precipitation depths and air temp. (Germany)

- beginning of the year wet
- Feb. Nov.: precipitation depths continuously and clearly below average
- Apr. Dec.: temperatures (partly much) higher than average
- \rightarrow drought, especially in the North-East, but also in other parts of Germany

Bundesanstalt für Gewässerkunde

Drought & low-flow 2018 in Germany – impacts

water status, water quality:


- high proportion of clear water (BLfU 2020)
- high **subst. concentrations**, esp. on Lower Rhine, Ems, Elbe. In parts, high conc. of heavy metals and drugs (BfG 2021, IKSR 2020).
- widespread and persistent high water temperature (>25°C). Middle Rhine: seven weeks continuously (IKSR 2020)
- reduced oxygen conc., mostly not critical, aeration measures at regul. rivers (IKSR 2020)
- red. performance of th. power plants and industry (cool. wat.) (Riedel et al. '21, IKSR '20)
- phytoplankton developmt. in some rivers, cyanobacteria in regulated Mosel until 2d half of Oct. (BfG 2021, IKSR 2020, LfU RP 2019)
- narrowed habitats (BLfU 2020, LfU RP 2019)

agriculture:

- yield loss often 15-20 % (BMEL 2018, Riedel et al. 2021), partly higher, estimated total loss > 3 bn. \in , gov. aid program in critical cases (Awater-Esper 2018)

forestry:

- damage due to dryness, pest infestation, fire
- 2% of forests to be reafforested after 2018/19 (BMEL 2020, Riedel et al. 2021)

Helms et al. - The Low-Flow Year 2018 in Germany

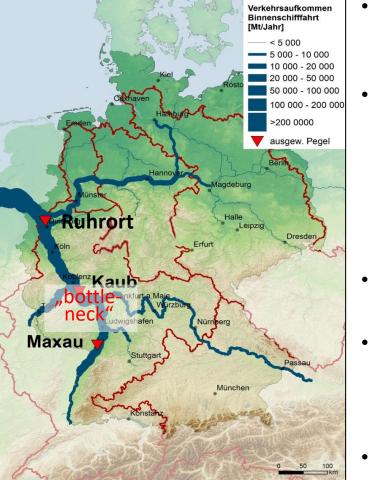
(drinking) water supply:

- **ensured**, only few local shortages in vuln. regions (IKSR 2020, LfU RP 2019, Riedel et al. 2021, BLfU 2020)
- compensations by (remote) supply networks

hydroelectricity:

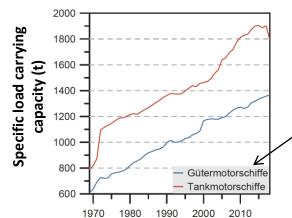
- **reduction**, mainly in smaller rivers (maintenance of ecol. continuity) (Riedel et al. 2021, IKSR 2020)

reservoirs,

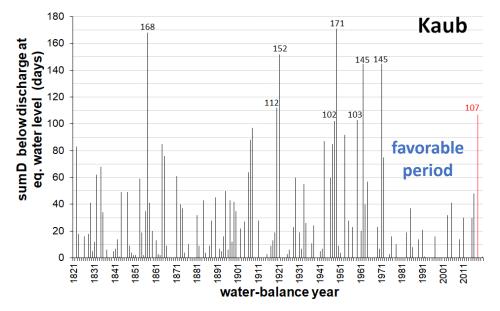

water transfer systems:

- high usage rate of storage capacities, partly with adapted operation rules (e.g., BLfU 2020, IKSR 2020); essential functions still
- fulfilled (drinking water, ecological minimum flow)

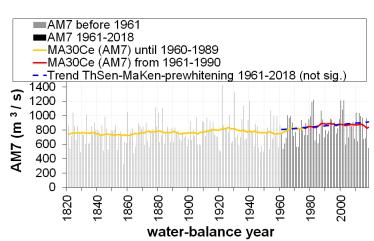
inland navigation:

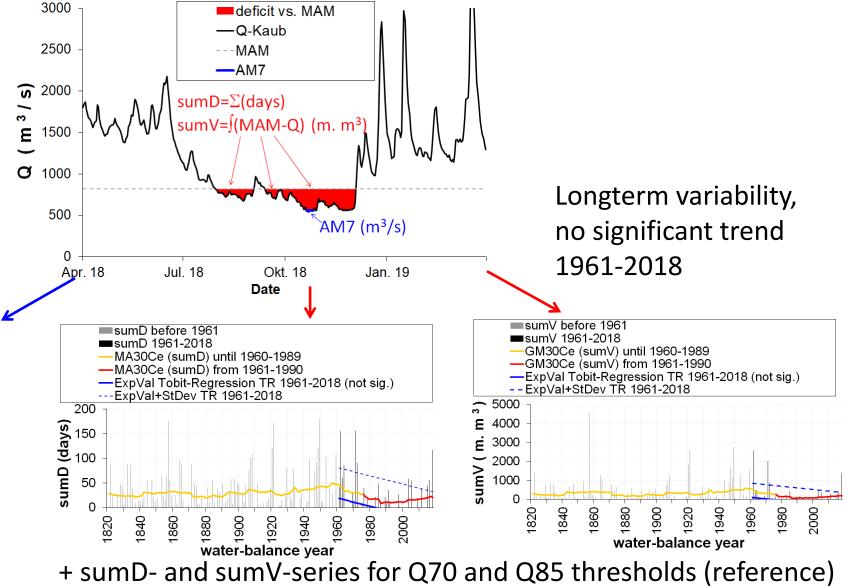

- early season cancellations in excursion shipping (e.g., Weser: 2018, '19 and '20)
- adverse effects on transport of goods ...

Low-flow 2018 – impact on inland navigation and industrial production


German waterways and freight traffic volumes 2010 (in million tonnes)

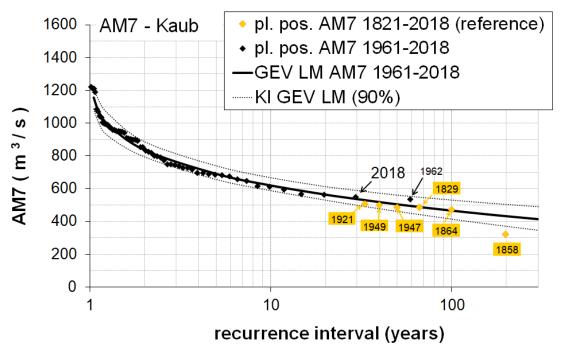
- Inland navigation with 6 % of freight transport in Germany, for some goods up to 30 % (coal, oil, gas)
- **2018:** reduced loading capacities, high transport costs, transport losses, esp. at the Rhine (80% of German inland water transport)
 - \rightarrow Rhine & tributaries:
 - 15 % of freight transport vs. 2017 (Riedel et al. 2021)
- Other transport modes also affected (fuel shortage)
- Concerned goods at the beginning of production chains
 - → losses in industrial production, at least 2 bn. € (IfW 2018, Destatis 2022)
 - In particular, **chem. industry** affected: BASF with 250 m. € loss of revenue due to restrictions in transport and use of cooling water (IKSR 2020)

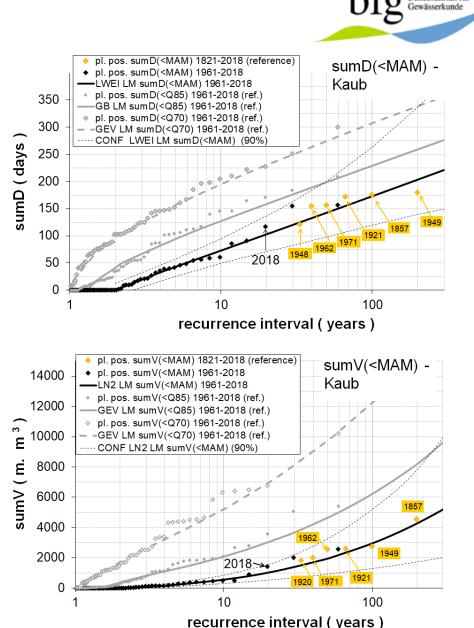

Average sizes of German inland vessels (data: WSV 2019



Low-flow indices and longterm series

- here: Rhine gauge Kaub
- series1961-2018 for synoptic analysis at various German gauges
- observed overall series from 1821 as reference (including historical extremes)

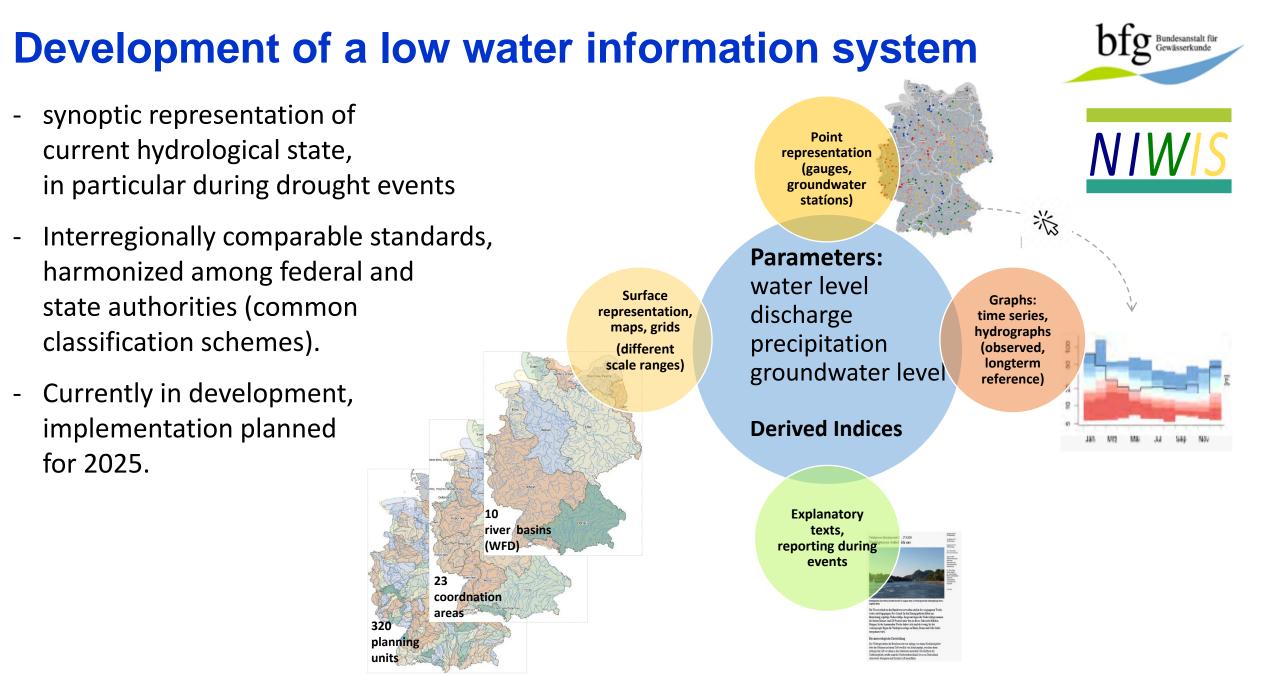




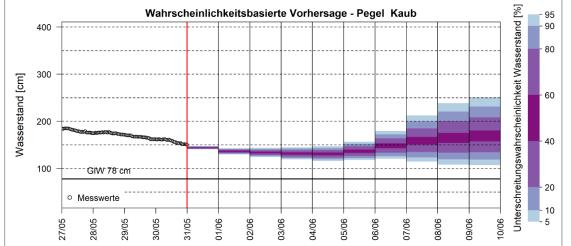
Extreme-value analyses – fit of cdf's

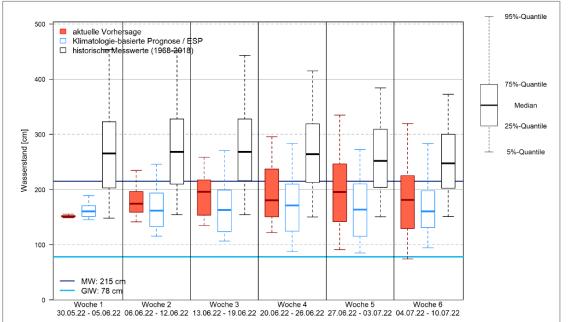
- Rhine gauge Kaub
- for series 1961-2018: selection, fit & diagnosis of cdf's
- information expansion using reference series and hydrological reasoning to support extrapolation:

temporal: including historical extremes causal: graded thresholds (sumD, sumV)



Extr.-val. analyses – quantiles, recurrence intervals

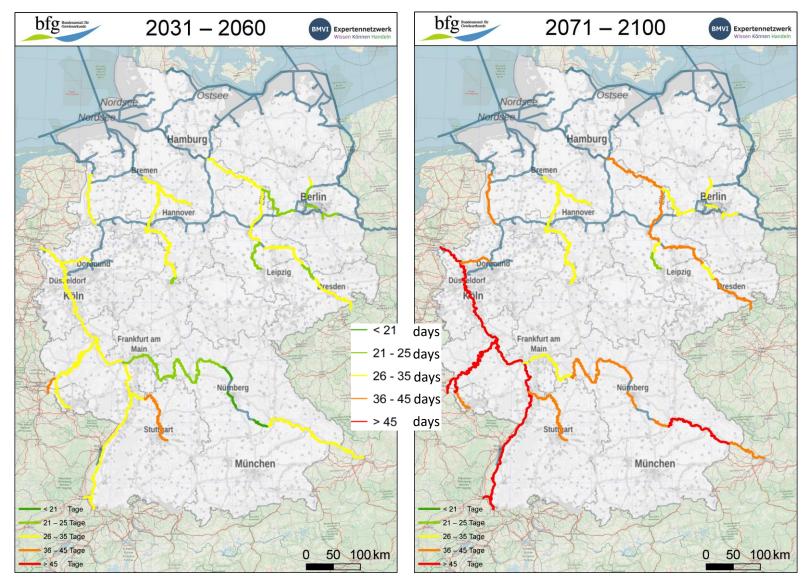

Index		Hohensaaten	Intschede	Dresden	N. Darchau	Maxau	Kaub	Köln	Hofkirchen
		(Oder)	(Weser)	(Elbe)	(Elbe)	(Rhine)	(Rhine)	(Rhine)	(Danube)
	T=5 J.	196	101	102	226	536	691	831	285
	T=10 J.	170	88,2	92,4	199	479	620	752	264
	T=20 J.	150	78,8	85,5	179	432	564	692	248
	T=25 J.	145	76,3	83,6	174	(418)	549	674	243
AM7	T=50 J.	130	69,1	78,3	159	379	505	627	231
[m ³ /s]	T=100 J.	117	63,2	73,8	146	345	466	586	220
	T=200 J.	107	58,0	69,9	135	314	432	550	210
	2018	154	75,9	82,8	166	418	548	656	245
Index		Hohensaaten	Intschede	Dresden	N. Darchau	Maxau	Kaub	Köln	Hofkirchen
		(Oder)	(Weser)	(Elbe)	(Elbe)	(Rhine)	(Rhine)	(Rhine)	(Danube)
	T=5 J.	84	51	28	59	39	43	42	28
	T=10 J.	123	83	56	101	72	73	71	57
sumD	T=20 J.	157	114	91	140	106	103	101	87
	T=25 J.	167	124	104	151	117		110	97
(<mam)< th=""><th>T=50 J.</th><th>197</th><th>155</th><th>147</th><th>184</th><th>150</th><th>142</th><th>142</th><th>129</th></mam)<>	T=50 J.	197	155	147	184	150	142	142	129
[days]	T=100 J.	225	185	192	213	181	173	174	161
	T=200 J.	251	216	237	237	208	203	208	194
	2018	185	158	162	193	105	117	126	116
Index		Hohensaaten	Intschede	Dresden	N. Darchau	Maxau	Kaub	Köln (Rhine)	Hofkirchen
		(Oder)	(Weser)	(Elbe)	(Elbe)	(Rhine)	(Rhine)		(Danube)
	T=5 J.	191	43	20	180	193	246	296	43
	T=10 J.	398	111	51	380	430	566	665	121
	T=20 J.	675	219	98	605	733	1037	1204	258
sumV	T=25 J.	782	262	118	705	847	1228	1421	318
(<mam)< th=""><th>T=50 J.</th><th>1175</th><th>424</th><th>196</th><th>1030</th><th>1258</th><th>1964</th><th>2255</th><th>568</th></mam)<>	T=50 J.	1175	424	196	1030	1258	1964	2255	568
[m. m ³]	T=100 J.	1675	620	306	1385	1765	2959	3376	938
[]	T=200 J.	2301	841	456	1780	2384	4273	4849	1466
	2018	942	405	271	1350	974	1404	2077	434


- Low Flow 2018 was a rare event, but has a certain recurrence probability.
- → need of preparedness to mitigate low-flow risks
- → intensified research and development of low-flow related products.

htg Bundesanstalt für Gewässerkunde

Forecast tools with increased lead time (BfG, ELWIS) bfg Burdesanstall full

10-day-forecast for the Rhine


- operational since December 2019
- first probabilistic product for German waterways
- for daily water-levels with graded confidence intervals (representing a forecast ensemble)
- extension to 14 days lead time in July 2022

6-week-forecast for Rhine and Elbe

- pre-operational, becoming operational in July 2022
- for weekly mean values (discharge + water level) in box plots (forecast ensemble)
- current forecast (red) & seasonal reference ensembles based on historical meteorol. observations and hydrological simulation (blue) and historical gauge series (black)

Future projection for German rivers / fed. waterways bfg Burdesanstalt für

- annual sumD (<Q_{20d/a, 1971-2000})
- high emission scenario RCP 8.5
- ensemble of 16 simulations (GCMs & RCMs & LARSIM ME)
- high estimates (85% quantiles) of mean sumD in the ensemble's individual simulation runs for:
- middle of 21st century: mostly moderate increase vs. ref. period
- end of 21st century: sig. increased sumD vs. ref. period, especially at Rhine and Danube.
- 85% qtl.: rather pessimistic case, but certain probability

Helms et al. - The Low-Flow Year 2018 in Germany

Conclusion

- extreme drought & low flow 2018 were part of a sequence of drought years 2015-2019
- decades before less concerned by extreme low flow ("favorable period")
- multiple adverse impacts on water resources and ecology, severe economic losses esp. in 2018, e.g., with regard to inland waterway transport (esp. Rhine) and dependent production chains
- BfG intensified low-flow related activities to quantify low-flow hazards and to mitigate potential risks by:
 - statistical analysis and classification (to be continued ...)
 - developing an information system (NIWIS, to be implemented in 2025)
 - provision of forecasts, scenarios and future projections
 - integration in comprehensive risk mitigation and adaptation concepts, e.g., FMDT-"Action Plan Low Water Rhine" including further measures of
 - information provision,
 - optimizations in transport, logistics and infrastructure,
 - investigation of options in hydraulic eng. and wat. res. management,

Helms et al. - The Low-Flow Year 2018 in Germany

- stakeholder dialogue.

Further information: UBA 26/2021: Climate Impact and Risk Assessment 2021 for Germany

https://www.umweltbundesamt.de/sites/default/files/medien/479/publikationen/ cc_27-2021_climate_impact_and_risk_assessment_2021_for_germany_english_summary_bf.pdf

UBA 174/2021: Riedel, Th. et al. (2021): Niedrigwasser, Dürre und Grundwasserneubildung ...

https://www.umweltbundesamt.de/publikationen/niedrigwasser-duerre-grundwasserneubildung

