

# **ACKNOWLEDGMENTS**



M. Giuliani



M. Zaniolo



A. Castelletti



M. Restelli



P. Bonetti



A.M. Metelli









#### EMERGING NEED FOR DROUGHT MANAGEMENT





### EMERGING NEED FOR DROUGHT MANAGEMENT





#### EMERGING NEED FOR DROUGHT MANAGEMENT



Q1-Q3 -Q2

400

**-**2022



**Figure 2:** Standardized Precipitation Index SPI-1 in March 2022.



SWE 2022 vs. 2010-2021

source: Toreti et al., Drought in Europe April 2022, GDO Analytical Report

### THE CHALLENGE OF DROUGHT DEFINITION





a drought is a lack of soil moisture

farmer



a drought is a period of anomalous water supply failure



## THE CHALLENGE OF DROUGHT DEFINITION











# EXAMPLE: AGRICULTURAL DROUGHTS IN NORTHERN ITALY









- Indexes generally agree in detecting dry periods
- •Results show differences in the onset, termination, and persistence
- •Results strongly depend on time aggregation

#### A VIRTUOUS EXAMPLE



Spanish Drought Management Plans rely on basin-specific drought indexes.

In the Jucar river basin, the index is defined as a linear combination of 12 predictors.

600

500

400

300

200

100

985/86

986/87

987/88

988/89

989/90

991/92

990/91

992/93

AÑO

994/95

1995/96

1996/97

97/38

98/99

99/00

Fallo SE5-Júcar

0000

– Indicador Fallo SE5-Júcar

Volumen Fallo (Hm3)





Cumulated storage of Alarcón, Contreras, and Tous reservoirs

CAN WE AUTOMATIZE THIS PROCESS?

















#### Candidate predictors

| Time information   | date               | Date of the measurement            |
|--------------------|--------------------|------------------------------------|
|                    | Moy                | Month of the year                  |
| Observed variables | In A               | Inflow to Alarcón reservoir        |
|                    | In C               | Inflow to Contreras reservoir      |
|                    | In T               | Inflow to Tous reservoir           |
|                    | Out A              | Outflow from Alarcón reservoir     |
|                    | Out C              | Outflow from Contreras reservoir   |
|                    | T1                 | Temperature in the west            |
|                    | T2                 | Temperature in the center          |
|                    | T3                 | Temperature in the east            |
| Indicators         | SPI <sub>3</sub>   | SPI at 3 months time aggregation   |
|                    | SPEI <sub>3</sub>  | SPEI at 3 months time aggregation  |
|                    | SPI <sub>6</sub>   | SPI at 6 months time aggregation   |
|                    | SPEI <sub>6</sub>  | SPEI at 6 months time aggregation  |
|                    | SPI <sub>12</sub>  | SPI at 12 months time aggregation  |
|                    | SPEI <sub>12</sub> | SPEI at 12 months time aggregation |







#### MODEL PERFORMANCE



• Model complexity: 
$$f_2(S) = |S|$$

Relevance: 
$$f_3(S) = \sum_{x_i \in S} SU(x_i, y)$$

extraction

Redundancy: 
$$f_4(S) = \sum_{x_i, x_j \in S, i < j}^{\text{subset}} SU(x_i, y)$$

Simmetric Uncertainty:

$$SU(A, B) = \left[\frac{2 \cdot (H(A) + H(B) - H(A, B))}{H(A) + H(B)}\right]$$













Dataset Candidate Definition of target predictors variable definition Input Variable Selection Feature extraction Definition of several Pareto efficient predictors' subset Choice of the 3) preferred subset **Drought Index** Construction Calibration of the selected model class FRIDA Index

- Extreme Learning Machine
- Artificial Neural Network
- Linear Model

## FRIDA APPLICATION IN THE JUCAR RIVER BASIN





#### **SELECTED PREDICTORS:**

- 1. Month of the year
- 2. Storage of Alarcon, Contreras, and Tous

- 3. Streamflow in middle basin
- 4. Piezometer in the center
- 5. SPEI over 6 months

## FRIDA APPLICATION IN THE LAKE COMO BASIN





CAN WE UPSCALE FRIDA FOR REGIONAL/CONTINENTAL STUDIES?







Lack of local data on water deficits

Spatially correlated drivers

Drought heterogeneity over space

Computational complexity





- Lack of local data on water deficits
   Satellite-derived information on crop status

   (e.g., FAPAR, NDVI)
- Spatially correlated drivers

Drought heterogeneity over space

Computational complexity



Dataset Candidate

Definition of target

#### drivers' correlation heatmap

• Lack of local data on water deficits

Satellite-derived information on crop status

(e.g., FAPAR, NDVI)

Spatially correlated drivers
 Dimensionality reduction via PCA

Drought heterogeneity over space

Computational complexity





- Lack of local data on water deficits
   Satellite-derived information on crop status

   (e.g., FAPAR, NDVI)
- Spatially correlated drivers
   Dimensionality reduction via PCA
- Drought heterogeneity over space
   Multi-task Learning algorithms
- Computational complexity

FRIDA Index





- Lack of local data on water deficits
   Satellite-derived information on crop status

   (e.g., FAPAR, NDVI)
- Spatially correlated drivers
   Dimensionality reduction via PCA
- Drought heterogeneity over space
   Multi-task Learning algorithms
- Computational complexity

Feature extraction via Conditional Mutual Information

RIDA Index

#### AN APPLICATION TO THE PO RIVER BASIN





200 candidate predictors:

- Precipitation(b,t)
- Temperature(b,t)
- Snow Depth(b,t)
- Lake levels(b,t)

 $b \in [B1,...,B10]$  $t \in [4,8,12,16,24]$  weeks

source: Autorità di Bacino Distrettuale del Fiume Po

#### PRELIMINARY RESULTS



# SELECTED PREDICTORS:

- Snow 4w
- Lake levels 8w, 12w
- Precipitation 4w, 8w, 12w, 16w
- Temperature 4w, 8w









• ML can enhance the definition of drought indexes



- ML can enhance the definition of drought indexes
- Extreme drought detection is a challenging ML problem



- ML can enhance the definition of drought indexes
- Extreme drought detection is a challenging ML problem
- Drought management can benefit from predictions/projections of ML-enhanced indexes



- ML can enhance the definition of drought indexes
- Extreme drought detection is a challenging ML problem
- Drought management can benefit from predictions/projections of ML-enhanced indexes





matteo.giuliani@polimi.it

@MxgTeo

STAY TUNED...