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EMERGING NEED FOR DROUGHT MANAGEMENT

December 4, 2018

Valid 7 a.m. EST
(Released Thursday, Dec. 6, 2018)

U.S. Drought Monitor

California

http://droughtmonitor.unl.edu/

The Drought Monitor focuses on broad-scale conditions.
Local conditions may vary. See accompanying text summary
for forecast statements.

Drought Conditions (Percent Area)

None D0-D4 D1-D4 D2-D4 D3-D4 D4

Current 7.77 92.23 79.69 18.34 3.78 0.00

Last Week 0.00 100.00 83.66 18.33 3.78 0.00

3 Months Ago 13.78 86.22 47.58 22.89 2.77 0.00

Start of 
Calendar Year 55.70 44.30 12.69 0.00 0.00 0.00

Start of
Water Year 12.18 87.82 47.97 22.82 4.94 0.00

One Year Ago 65.38 34.62 9.90 0.00 0.00 0.00
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EXAMPLE: AGRICULTURAL DROUGHTS IN 
NORTHERN ITALY 

•Indexes generally agree in 
detecting dry periods

•Results show differences in the 
onset, termination, and 
persistence

•Results strongly depend on time 
aggregation  



A VIRTUOUS EXAMPLE

Spanish Drought Management Plans rely on  
basin-specific drought indexes.


In the Jucar river basin, the index is defined as a 
linear combination of 12 predictors.

DEFICIT
DROUGHT 
INDEX



CAN WE AUTOMATIZE THIS 
PROCESS?



THE FRIDA METHOD

Candidate 
predictors

Input Variable 
Selection

1) 

Dataset 
definition

2) 

Feature 

extraction

3) 

Drought Index 

Construction

Definition of several 
Pareto efficient predictors’ 

subset

Choice of the 
preferred subset

Calibration of the 
selected model class

FRIDA Index

Definition of target 
variable



Candidate 
predictors

Input Variable 
Selection

1) 

Dataset 
definition

2) 

Feature 

extraction

3) 

Drought Index 

Construction

Definition of several 
Pareto efficient predictors’ 

subset

Choice of the 
preferred subset

Calibration of the 
selected model class

FRIDA Index

Definition of target 
variable

THE FRIDA METHOD

DEFICIT



Candidate 
predictors

Input Variable 
Selection

1) 

Dataset 
definition

2) 

Feature 

extraction

3) 

Drought Index 

Construction

Definition of several 
Pareto efficient predictors’ 

subset

Choice of the 
preferred subset

Calibration of the 
selected model class

FRIDA Index

Candidate predictorsDefinition of target 
variable

THE FRIDA METHOD



Candidate 
predictors

Input Variable 
Selection

1)  
Dataset 
definition

2) 

Feature 

extraction

3) 

Drought Index 

Construction

Definition of several 
Pareto efficient predictors’ 

subset

Choice of the 
preferred subset

Calibration of the 
selected model class

FRIDA Index

Definition of target 
variable

THE FRIDA METHOD

Karakaya et al., 2016, IEEE Transactions on Cybernetics



Candidate 
predictors

Input Variable 
Selection

1) 

Dataset 
definition

2) 

Feature 

extraction

3) 

Drought Index 

Construction

Definition of several 
Pareto efficient predictors’ 

subset

Choice of the 
preferred subset

Calibration of the 
selected model class

Drought Index

Definition of target 
variable

MODEL PERFORMANCE


• Predictive accuracy: 


• Model complexity:  


• Relevance: 

• Redundancy: 


Simmetric Uncertainty:


𝑓1(𝑆) = 𝑆𝑈(𝑦, 𝑦̂(𝑆))
𝑓2(𝑆) =   𝑆

𝑓3(𝑆) =  ∑𝑥𝑖∈𝑆
𝑆𝑈(𝑥𝑖, 𝑦)

𝑓4(𝑆) = ∑𝑥𝑖,𝑥𝑗∈𝑆,𝑖<𝑗
𝑆𝑈(𝑥𝑖, 𝑦)

𝑆𝑈(𝐴, 𝐵) =  [ 2  ∙ (𝐻(𝐴) + 𝐻(𝐵) − 𝐻(𝐴, 𝐵))
𝐻(𝐴) + 𝐻(𝐵) ]

Karakaya et al., 2016, IEEE Transactions on Cybernetics
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• Extreme Learning Machine


• Artificial Neural Network


• Linear Model


THE FRIDA METHOD



SELECTED PREDICTORS:

1.Month of the year

2. Storage of Alarcon, Contreras, 

and Tous


3. Streamflow in middle basin

4.Piezometer in the center

5. SPEI over 6 monthsZaniolo et al., 2018, HESS

FRIDA APPLICATION IN THE JUCAR RIVER BASIN



SELECTED VARIABLES:

• Week of the year

• Temperature

• SMRI (snowmelt + precipitation) 

over 6 months

Zaniolo et al., 2019, IFAC papers online

FRIDA APPLICATION IN THE LAKE COMO BASIN



CAN WE UPSCALE FRIDA FOR 
REGIONAL/CONTINENTAL 
STUDIES?



UPSCALING CHALLENGES

• Lack of local data on water deficits


• Spatially correlated drivers


• Drought heterogeneity over space
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Satellite-derived information on crop status

(e.g., FAPAR, NDVI)

Copernicus European Drought Observatory (EDO): http://edo.jrc.ec.europa.eu/                                    © European Commission, 2019 
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EDO INDICATOR FACTSHEET 

 

FAPAR Anomaly 
 
This Factsheet provides a detailed technical description of the indicator Fraction of Absorbed 
Photosynthetically Active Radiation (FAPAR) Anomaly that is implemented in the Copernicus 
European Drought Observatory (EDO), which is used for detecting and monitoring the impacts of 
agricultural drought on the growth and productivity of vegetation. The satellite-derived biophysical 
variable on which the FAPAR Anomaly indicator is based, as well as ƚŚĞ� ŝŶĚŝĐĂƚŽƌ͛Ɛ temporal and 
spatial scales and geographic coverage, are summarized below. An example of the FAPAR Anomaly 
indicator is shown in Figure 1. 
 

Variable Temporal scale Spatial scale Coverage 
Fraction of Absorbed  

Photosynthetically Active  
Radiation (FAPAR) 

10 days  
(= 1 dekad) 

1 km Europe  

 
 

 

Figure 1: Example of the continuously updated FAPAR Anomaly in EDO, highlighting the conditions of 
relative vegetation stress (negative anomalies) during the severe drought of 2018. 
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source: Copernicus European Drought Observatory
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Dimensionality reduction via PCA
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Multi-task Learning algorithms

source: Ruder, 2017, arXiv:1706.05098
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Multi-task Learning algorithms

Feature extraction via 

Conditional Mutual Information

ܫ ܺǡ ܻ ܼ ൌ ܫ ܺǡ ܻ െ ሺܺǢܫ ܻǡ ܼሻ

FILTER APPROACH:
CONDITIONAL MUTUAL INFORMATION (CMI) FEATURE SELECTION*

* M. Beraha, A. M. Metelli, M. Papini, A. Tirinzoni and M. Restelli, "Feature Selection via Mutual Information: New Theoretical Insights," 2019 International Joint Conference on Neural
Networks (IJCNN), 2019, pp. 1-9.

Quantifies the "amount of information" between
X and Y having observed Z

� Feature Selection Procedure (Forward): add
variables with high CMI, given the already
selected ones

� Obtain a set of non-redundant informative
variables

� Theoretical bound quantifying the amount of 
information lost with respect to the full set of 
variables

source: Beraha et al., 2019, IJCNN

Satellite-derived information on crop status

(e.g., FAPAR, NDVI)

Dimensionality reduction via PCA



AN APPLICATION TO THE PO RIVER BASIN

200 candidate predictors:


• Precipitation(b,t)


• Temperature(b,t)


• Snow Depth(b,t)


• Lake levels(b,t)


b ∈ [B1,…,B10]


t ∈ [4,8,12,16,24] weeks


source: Autorità di Bacino Distrettuale del Fiume Po



PRELIMINARY RESULTS

SELECTED 

PREDICTORS:


• Snow 4w


• Lake levels 8w, 12w


• Precipitation 4w, 8w, 

12w, 16w


• Temperature 4w, 8w

observations

linear model


Random Forest

FF ANN

test results for single district
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