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Objectives:

1. Evaluate bias adjustment of seasonal meteo-forecasts

2. Evaluate predictability of seasonal hydro-forecasts, in terms of lead

weeks

3. Investigate drivers of the predictability (ongoing)

Model: E-HYPE v.3.1.3 (35408 subbasins)
Reference forcing: HydroGFD product v2.0 (SMHI)
Period: 1993-2015

Meteo forcing: ECMWF SEASS forecasts
Bias-adjust: Distribution Based Scaling

(DBS)
Max lead time: 30 lead weeks
Ensemble: 25 members

Initialization:  Every month
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Meteo forcing: CMCC forecasts

Bias-adjust:

(DBS)
Max lead time: 26 lead weeks
Ensemble: 40 members

Initialization:  Every month

EHYPE: Hundecha et al., 2016
HydroGFD: Berg et al., 2018
DBS: Yang et al., 2010



Bias Adjustment of Seasonal Meteorological Forecasts mHI

ECMWEF SEASS forecasts CMCC forecasts

Biases: average difference between the forecast ensemble and the reference
Reference: HydroGFD

Continuous Ranked Probability Skill Score (CRPSS; Wilks, 2006)

Benchmark: Simulated climatology from HydroGFD
CRPS: Continuous Ranked Probability Score

CRPSS: 1- CRPS/CRPSbenchmark



Quality Control in Bias Adjustment: bias in SEAS5

Precipitation Temperature
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Pechlivanidis, I. G. et al. (2020).



Quality Control in Bias Adjustment: bias in CMCC

Precipitation Temperature
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By Thomas Bosshard



Quality Control in Bias Adjustment: CRPSS

o
CRPSS in Precipitation

—
CRPSS in Temperature

CMCC
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Seasonal Hydrological Forecasts—Evaluation

CRPS
CRPSS

BS10
BSS10

Continuous Ranked Probability Score (CRPS)
Pseudo-observation:  Simulation

Benchmark: Simulated climatology
CRPSS =1 - CRPS/CRP Sbenchmark

Brier Score (BS) of low flow (10th) weekly average runoff
BS = ~1_,(P(X()) — sgn(obs))>

Benchmark: Simulated climatology
Brier Skill Score: BSS =1 - BS/BSbenchmark  (— t0 1)
Evaluation periods: Low flow periods (33rd)

Streamflow (mm}
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Seasonal Hydrological Forecasts Evaluation: CRPSS mHI

CRPSS in Streamflows

SEASS CMCC Initialization
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Seasonal Hydrological Forecasts Evaluation: BSS10 mﬂl
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SEASS
Lead week 0 to 29

No skill 0 1




Seasonal Hydrological Forecasts Evaluation: BSS10 mﬂl

CMCC
Lead week 0 to 25

No skill 0 1




Seasonal Hydrological Forecasts—Identifying Drivers ml.“

Hydrological signatures

Qm Mean annual specific runoff mm/year
g05 Normalized high streamflow --
q95 Normalized low streamflow --
q70 Normalized relatively low streamflow --
mFDC Slope of streamflow duration curve %/%
Dpar Range of Pardé coefficient -
Cv Coefficient of variation -
Flash Flashiness --
PD Normalized peak distribution --
RLD Rising limb density --
DLD Declining limb density --
BFI Baseflow index --
RC Runoff coefficient --
EQP Streamflow elasticity --
HPC High pulse count --

Hydrological similar regions from model simulation ~ (Pechlivanidis, I. G. et al. (2020). Water Resources
Research https://doi.org/10.1029/2019WR026987)



Seasonal Hydrological Forecasts—Identifying Drivers mHI

Predictability of low flow extremes in each hydro-cluster
Cluster

BSS10
BSS10

0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28 ___

) 2 OCoO~NOOOPR~,WDN -

- O

Lead week Lead week



BSS10

BSS10

Seasonal Hydrological Forecasts—Identifying Drivers
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Seasonal Hydrological Forecasts—Identifying Drivers
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Conclusions:

The predictability of the seasonal streamflow forecasts on low streamflow
extremes

1. achieve high skills in the first several lead weeks (4-6 weeks).

2. varies geographically, deteriorates with increased lead weeks.

3. can be regionalized, based on a priori knowledge of the local hydrological
conditions.

Next Step:

1. Explore links between predictabilities and hydrological similarity/climatic
characteristics (machine learning)
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